三年在线观看免费观看,日本成本人片不卡无码免费,成品人和精品人的区别三叶草,欧美国产日韩a在线视频y

Your location:Home > Newsroom > Industry News

New proton technique enables more specific targeting of resistant cancer cells


 

Researchers at Mayo Clinic have developed LEAP, a new technique that enables clinicians to more specifically target and administer proton therapy to cancer cells that resist other forms of treatment.

"We compared the effects of delivering the same amount of energy or dose into cancer cells using a dense energy deposition pattern with LEAP versus spreading out the same energy more diffusely, which is typical of conventional photon and proton therapy," said radiation oncologist Dr. Robert Mutter, co-principal investigator of the study. "Surprisingly, we discovered that cancers with inherent defects in the ATM-BRCA1-BRCA2 pathway are exquisitely sensitive to a new concentrated proton technique."

A variety of internal and external forces create tens of thousands of DNA lesions daily. Cells use evolved complex repair pathways to repair the damage, but defects in these pathways can lead to the development of diseases, including cancer.

Using a dense energy deposition pattern, Mutter and his colleague, Zhenkun Lou, the other co-principal investigator, applied LEAP, which is an acronym for biologically enhanced particle therapy, to tumors with inherent defects in the ATM-BRCA1-BRCA2 DNA repair pathway. These types of defects are commonly found in cancer, with breast and ovarian cancer mutations in BRCA1 and BRCA2 repair genes being the most common cause.

They found that cancers with inherent defects in the ATM-BRCA1-BRCA2 pathway are more sensitive to a new concentrated proton technique compared to when the same amount of energy is dispersed more diffusely in conventional photon and proton therapy. The technique spared healthy tissues from exposure to radiation therapy and allowed their full complement of DNA repair elements to remain intact. In addition, the researchers were able to alter DNA repair mechanisms by co-administering an ATM inhibitor, a regulator of the body’s response to DNA damage, which enhanced the sensitivity of repair-proficient cells to LEAP.

"LEAP is a paradigm shift in treatment, whereby newly discovered biologic responses, induced when proton energy deposition is concentrated in cancer cells using novel radiation planning techniques, may enable the personalization of radiotherapy based on a patient's tumor biology," said Mutter.

Mutter and the radiation oncology team at Mayo are currently developing clinical trials to assess the safety and efficiency of LEAP for multiple types of cancer.

The findings were published in Cancer Research, the journal of the American Association for Cancer Research.

About AVE   |   Newsroom   |   Products   |   Service   |   Contact Us
◎China. Changsha. AVE Science & Technology Co.Ltd. All Rights Reserved
<label id="pmmrb"></label>

<ul id="pmmrb"></ul>

    主站蜘蛛池模板: 若尔盖县| 都匀市| 镇安县| 托里县| 醴陵市| 昔阳县| 江永县| 惠州市| 甘孜县| 博湖县| 萨嘎县| 奇台县| 嘉祥县| 溧水县| 卓尼县| 铜梁县| 方正县| 梁山县| 定边县| 辉南县| 洛南县| 阿鲁科尔沁旗| 拜城县| 松原市| 仙游县| 西峡县| 贵港市| 江北区| 周口市| 慈利县| 安龙县| 汝城县| 永春县| 综艺| 津南区| 贺兰县| 井陉县| 依安县| 襄樊市| 尼勒克县| 怀宁县|