三年在线观看免费观看,日本成本人片不卡无码免费,成品人和精品人的区别三叶草,欧美国产日韩a在线视频y

Your location:Home > Newsroom > Industry News

UTI Testing Technology Cuts Screening Time Significantly


 Most urinary tract infections (UTI) are mild, but serious cases can lead to hospitalization and at worst, bacteria can enter the bloodstream causing urosepsis, a life-threatening condition. In this case antibiotics are vital and must be given immediately.

 

Faster prediction of whether the UTI is caused by a highly resistant type of bacteria will allow precise tailoring of treatment. The patient will get an antibiotic that is sure to be active against their pathogen, and society's limited antibiotic resource will be better managed. This will help in the fight against increasing antibiotic resistance, one of the biggest challenges facing society today.

 

Medical scientists at the University of East Anglia (Norwich, UK) explored whether nanopore sequencing could accelerate diagnosis and resistance profiling, using complicated urinary tract infections as an exemplar. Bacterial DNA was enriched from 10 clinical urines and from five healthy urines ‘spiked’ with multiresistant Escherichia coli then sequenced. . Sequences were analyzed using external databases and bioinformatic pipelines or, ultimately, using integrated real-time analysis applications. Results were compared with Illumina data and resistance phenotypes.

 

The team used the MinION nanopore sequencing (Oxford Nanopore Technologies, Oxford, UK) which correctly identified pathogens without culture and, among 55 acquired resistance genes detected in the cultivated bacteria by Illumina sequencing, 51 were found by MinION sequencing directly from the urines; with three of the four failures in an early run with low genome coverage. Resistance-conferring mutations and allelic variants were not reliably identified. MinION sequencing comprehensively identified pathogens and acquired resistance genes from urine in a timeframe of four hours from sample to result similar to polymerase chain reaction (PCR).

 

Image: The MinION nanopore sequencing device (Photo courtesy of Oxford Nanopore Technologies).

 

Justin O'Grady, PhD, said, a senior author of the study, said, “This study is the first to use MinION sequencing to rapidly diagnose pathogens and antimicrobial resistance in clinical samples, without growing them. Improvements in the sequencing technology, data analysis and sample preparation mean we've reduced the turnaround time to four hours. Getting results this fast would allow clinicians to adjust antimicrobial very early, even before the second dose is given as most antibiotics are given around once every eight hours.” The study was published on September 25, 2016, in the Journal of Antimicrobial Chemotherapy.

About AVE   |   Newsroom   |   Products   |   Service   |   Contact Us
◎China. Changsha. AVE Science & Technology Co.Ltd. All Rights Reserved
<label id="pmmrb"></label>

<ul id="pmmrb"></ul>

    主站蜘蛛池模板: 寿阳县| 蓬溪县| 肃宁县| 连云港市| 同仁县| 呼图壁县| 江源县| 右玉县| 东方市| 正蓝旗| 和平区| 千阳县| 宜春市| 木里| 云霄县| 东平县| 苍山县| 永定县| 颍上县| 鄂托克前旗| 射洪县| 株洲市| 手机| 银川市| 商水县| 新绛县| 陕西省| 蚌埠市| 柞水县| 咸丰县| 积石山| 磐石市| 光山县| 东城区| 化德县| 仙游县| 义乌市| 乡宁县| 合水县| 临武县| 集安市|