三年在线观看免费观看,日本成本人片不卡无码免费,成品人和精品人的区别三叶草,欧美国产日韩a在线视频y

Your location:Home > Newsroom > Industry News

New proton technique enables more specific targeting of resistant cancer cells


 

Researchers at Mayo Clinic have developed LEAP, a new technique that enables clinicians to more specifically target and administer proton therapy to cancer cells that resist other forms of treatment.

"We compared the effects of delivering the same amount of energy or dose into cancer cells using a dense energy deposition pattern with LEAP versus spreading out the same energy more diffusely, which is typical of conventional photon and proton therapy," said radiation oncologist Dr. Robert Mutter, co-principal investigator of the study. "Surprisingly, we discovered that cancers with inherent defects in the ATM-BRCA1-BRCA2 pathway are exquisitely sensitive to a new concentrated proton technique."

A variety of internal and external forces create tens of thousands of DNA lesions daily. Cells use evolved complex repair pathways to repair the damage, but defects in these pathways can lead to the development of diseases, including cancer.

Using a dense energy deposition pattern, Mutter and his colleague, Zhenkun Lou, the other co-principal investigator, applied LEAP, which is an acronym for biologically enhanced particle therapy, to tumors with inherent defects in the ATM-BRCA1-BRCA2 DNA repair pathway. These types of defects are commonly found in cancer, with breast and ovarian cancer mutations in BRCA1 and BRCA2 repair genes being the most common cause.

They found that cancers with inherent defects in the ATM-BRCA1-BRCA2 pathway are more sensitive to a new concentrated proton technique compared to when the same amount of energy is dispersed more diffusely in conventional photon and proton therapy. The technique spared healthy tissues from exposure to radiation therapy and allowed their full complement of DNA repair elements to remain intact. In addition, the researchers were able to alter DNA repair mechanisms by co-administering an ATM inhibitor, a regulator of the body’s response to DNA damage, which enhanced the sensitivity of repair-proficient cells to LEAP.

"LEAP is a paradigm shift in treatment, whereby newly discovered biologic responses, induced when proton energy deposition is concentrated in cancer cells using novel radiation planning techniques, may enable the personalization of radiotherapy based on a patient's tumor biology," said Mutter.

Mutter and the radiation oncology team at Mayo are currently developing clinical trials to assess the safety and efficiency of LEAP for multiple types of cancer.

The findings were published in Cancer Research, the journal of the American Association for Cancer Research.

About AVE   |   Newsroom   |   Products   |   Service   |   Contact Us
◎China. Changsha. AVE Science & Technology Co.Ltd. All Rights Reserved
<label id="pmmrb"></label>

<ul id="pmmrb"></ul>

    主站蜘蛛池模板: 中西区| 固始县| 明光市| 萍乡市| 永定县| 调兵山市| 永济市| 盘锦市| 右玉县| 武平县| 贵溪市| 新龙县| 井研县| 海林市| 呼玛县| 朔州市| 安康市| 枝江市| 云南省| 虞城县| 通渭县| 南汇区| 荆州市| 大理市| 郧西县| 佛坪县| 宽甸| 内丘县| 肥西县| 巴东县| 枣阳市| 东明县| 肇东市| 静海县| 三江| 应用必备| 新田县| 新乡市| 巴青县| 东丽区| 康平县|